Re: The Ultimate Lua Challenge
Deleted UserIF YOU ONLY 13 YEARS OLD!?
I cant solve probs becouse my math knowledge is only on 6'th class level
so.. to be lua programmer you must end school?
--11 function is_prime(n) 	if n % 2 == 0 and n ~= 2 then return false end 	ss = floor(sqrt(n)) 	if ss * ss == n then return false end 	local i = 3 	while i <= ss do 		if n % i == 0 then return false end 		i = i + 2 	end 	return true end --12 function gcd(a,b) 	local c = a % b 	if c == 0 then	return b else return gcd(b, c) end end --13 function relative_prime(a,b) 	return gcd(a,b) == 1 end --14 function phi(n) 	local c = 0 	if is_prime(n) then return n-1 	else 		for i = 1, n do 			if relative_prime(i,n) then 				c = c + 1 			end 		end 	end 	return c end function get_primes(n) 	local primes = {} 	ss = math.floor(math.sqrt(n)) 	for i =2, n do 		primes[i] = true 	end 	for i = 2, n do 		if primes[i] then 			for j = i*i, n, i do 				primes[j] = nil 			end 		end 	end 	return primes end --15 function prime_factors(n) 	local primes = get_primes(n) 	local factors = {} 	local function factor(n) 		if primes[n] then 			table.insert(factors,n) 			return 		else 			for i,v in pairs(primes) do 				if n % i == 0 then 					table.insert(factors,i) 					return factor(n/i) 				end 			end 		end 	end 	factor(n) 	return factors end --16 function unique_prime_factors(n) 	local count = 0 	local factors = prime_factors(n) 	local uniques = {} 	local duplicates = {} 	local dup = 1 	for i = 1, #factors do 		local f = factors[i] 		local next = factors[i+1] 		if next == f then 			dup = dup + 1 		else 			table.insert(uniques,f) 			table.insert(duplicates,dup) 			dup = 1 		end 	end 	return uniques,duplicates end --17 function phi_2(n) 	local pow = math.pow 	p,k = unique_prime_factors(n) 	local sum = 1 	for i=1,#p do 		sum = sum * (p[i] - 1)*pow(p[i],(k[i] - 1)) 	end 	return sum end print(phi(10090)) print(phi_2(10090)) --18 function gen(n) 	return get_primes(n) end --19 function goldbach(n) 	primes = get_primes(n) 	for i,v in pairs(primes) do 		if primes[i] and primes[n-i] then 			return i,n-i 		end 	end 	return false end for i=4, 1000,2 do 	if not goldbach(i) then print("not able "..i) end end
function f(a, x, x0) 	if x == 0 then 		return x0 	end 	return f(a,x-1)/4 * (5 - a*f(a,x-1,x0)^3) end